人教版初二数学上册教案(通用10篇)
作为一名优秀的教育工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?以下是整理的人教版初二数学上册教案,欢迎阅读,希望大家能够喜欢。
初二数学上册教案 篇1
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些*形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面*形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个 什么角?
问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由*中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示*表。
(3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?
问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。
4、变式训练,巩固提高
根据例4 的度数的求法,思考如下问题:
(3)如*5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?
(4)当MN绕着点D旋转过程中, 会有怎样的变化?
提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时, =
变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,
变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =
变化4当直线MN与AC、BC的交点在C点时, =
经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。
5、小结
通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。
6、布置作业
a、书面作业P43#3
b、上交作业P42#16、17
初二数学上册教案 篇2
教学目标:
知识与技能
1.掌握直角三角形的判别条件,并能进行简单应用;
2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观
敢于面对数学学习中的困难,并有***克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
教学难点
会辨析哪些问题应用哪个结论.
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△ABC的两边AB=5,AC=12,则BC=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈、如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉、继续尝试:下面的'三组数分别是一个三角形的三边长a,b,c:
5,12,13;6,8,10;8,15,17.
(1)这三组数都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
满足a2+b2=c2的三个正整数,称为勾股数.
⒋例1一个零件的形状如左*所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右*所示,这个零件符合要求吗?
随堂练习:
⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.
⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
⒋、习题1.3
课堂小结:
⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
初二数学上册教案 篇3
教学目标:
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
出示投影1(章前的*文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2(书中的P2*1—2)并回答:
1、观察*1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、*1—2中,A,B,C之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出*1—1中的A.B,C的关系呢?
二、做一做
出示投影3(书中P3*1—4)提问:
1、*1—3中,A,B,C之间有什么关系?
2、*1—4中,A,B,C之间有什么关系?
3、从*1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、议一议
1、*1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”
也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
五、巩固练习
1、错例辨析:
△ABC的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足=25
即:c=5
辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题
△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边
综上所述这个题目条件不足,第三边无法求得。
2、练习P7§1.11
六、作业
课本P7§1.12、3、4
初二数学上册教案 篇4
教学目标
1、知识与技能目标
(1)通过拼*活动,让学生感受无理数产生的实际背景和引入的必要性.
(2)能判断给出的数是否为无理数,并能说出理由.
2、过程与方法目标
(1)学生亲自动手做拼*活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.
(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.
(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生***思考、合作交流的意识和能力.
3、情感与态度目标
(1)激励学生积极参与教学活动,提高大家学习数学的热情.
(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.
(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.
教学重点
1、让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.
2、会判断一个数是否为有理数,是否不是有理数.
3、用计算器进行无理数的估算.
教学难点
1、把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2、无理数概念的建立及估算.
3、判断一个数是否为有理数.
教学准备:
多媒体,两个边长为1的正方形,剪刀,短绳.
教学过程:
第一环节:章节引入(2分钟,学生阅读感受)
内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:
(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?
(2)一个边长为6cm的正方形木板,按如*的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?
b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?
第二环节:复习引入(3分钟,学生口答)
内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称.
请用上述材料中所涉及的知识证明下面的问题:
a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?
b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?
第三环节:活动探究(15分钟,学生动手操作,小组合作探究)
(一)发现新数
内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.
在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:
(1)设大正方形的边长为,应满足什么条件?
(2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?
(3)可能是分数吗?说说你的理由?
引出课题《数怎么又不够用了》
(二)感受新数的广泛性
内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。
(三)巩固验证,应用拓展
内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.
b如*(1)是由16个边长为1的小正方形拼成的,试从连接这些
小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段
第四环节:介绍历史,开阔视野(3分钟,学生阅读)
内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.
第五环节:课时小结(2分钟,全班交流)
内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?
b感受数不够用了,会确定一个数是有理数或不是有理数.
c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.
第六环节:布置作业
初二数学上册教案 篇5
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画*向学生渗透集合思想.
二、重点、难点
1.教学重点:
菱形的性质1、2.
2.教学难点:
菱形的性质及菱形知识的综合应用.
三、课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如*做成的一组对边可以活动的教具进行演示)如*,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
四、例习题分析
例1(补充)已知:如*,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:∠AFD=∠CBE.
证明:∵四边形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如*,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
六、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.
2.如*,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
初二数学上册教案 篇6
教学目的:
1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。
2、结合学生的实际情况,让学生填写算式。
3、在教学中渗透数的顺序,并进行社会秩序教育。
4、学会与人合作,体会计算的多样化,发展学生思维。
教学重点:
掌握20以内数的顺序。
教学难点:
初步建立数的概念
教学准备:
每组一个数位计数器及40-50根小棒等。
教学方法:
抓问题,用多种游戏,把抽象的数位具体化。
教学步骤:
一、创设情景,寻找关键问题
1、数学课研究数学问题,一些小棒会有什么数学问题。
(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)
2、你发现了什么数学问题。
(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)
3、游戏,看谁的手小巧。
老师报数,学生用棒子表示,讨论:快的同学的诀窍。
出示:十根可以捆一捆。
再进行游戏,让学生习惯中把1捆当作10根用。
4、完成:
()个一()个十
试一试,在计数器拔出10
个位只有几颗珠子,怎么办?(10个一是1个10)
在个位拔上一颗珠子,表示1个十,也表示10个一。
二、自主合作,解决数位顺序。
在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。
1、11-20各数在计数器上怎么表示呢?
问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的*示表达自己的想法,学生之间互相交流,实现生生互动。
(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)
2、
1个十,1个一是1110+1=11
10和11,十位上是1,没有变,个位由0变成1,就是11。
3、15、19、20的数位可重点检查。
(20的数位可由10-20,也可19-20来描述。)
4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。
5、练习:(口算)
10+910+810+710+610+5
10+410+39+108+107+10
6+105+104+103+10
三、实践应用,实现知识延伸
1、寻找粗心丢失的数。
游戏报数。(报数时丢一些中间数)
2、开火车顺数
游戏:数数(顺数和倒数)
3、拔珠游戏(师生――生生)
报数13,拔13并写出13,同时说13的含义,还可画珠。
4、p691-6自己完成。
四、课外实践,拓展知识应用。
1、完成10-20各数数位*及小棒*。
2、和父母互说10-20各数组成。
课后评析:
初二数学上册教案 篇7
教学目标
1.会解简易方程,并能用简易方程解简单的应用题;
2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;
3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
教学建议
一、教学重点、难点
重点:简易方程的解法;
难点:根据实际问题中的数量关系正确地列出方程并求解。
二、重点、难点分析
解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。
判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。
三、知识结构
导入方程的概念解简易方程利用简易方程解应用题。
四、教法建议
(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。
(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。
(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。
(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。
五、列简易方程解应用题
列简易方程解应用题的一般步骤
(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.
(2)找出能够表示应用题全部含义的一个相等关系.
(3)根据这个相等关系列出需要的代数式,从而列出方程.
(4)解这个方程,求出未知数的值.
(5)写出答案(包括单位名称).
概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.
初二数学上册教案 篇8
教学目标:
经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系
教学重点和难点
重点:
圆与圆之间的几种位置关系
难点:
两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系
教学过程设计
一、从学生原有的认知结构提出问题
(1)复习点与圆的位置关系;
(2)复习直线与圆的位置关系。
二、师生共同研究形成概念
1.书本引例
☆ 想一想 P 125 平移两个圆
利用平移实验直观地探索圆和圆的位置关系。
2.圆与圆的位置关系
每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出来
☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;
若两圆有一个交点,则这两个圆的位置关系是 相切 ;
若两圆有两个交点,则这两个圆的位置关系是 相交 ;
☆ 想一想 书本P 126 想一想
通过实际例子让学生理解圆与圆的位置关系。
3.圆与圆相切的性质
☆ 想一想 书本P 127 想一想
旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切*形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。
如果两圆相切,那么两圆的连心线经过切点
4.讲解例题
例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。
5.讲解例题
例2.两个同样大小的肥皂泡粘在一起,其剖面如*所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。
三、随堂练习
1.书本 P 128 随堂练习
2.《练习册》 P 59
四、小结
圆与圆的位置关系;圆心距与两圆半径和两圆的关系。
五、作业
书本 P 130 习题3.9 1
初二数学上册教案 篇9
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点
1.重点:
探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:
找出能表示整个题意的等量关系。
教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识。
利润=售价—成本; =商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息—利息税=48.6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%—x
由等量关系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服装的成本是125元。
三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
初二数学上册教案 篇10
一、教学目标
1.掌握矩形的定义,知道矩形与平行四边形的关系.
2.掌握矩形的性质定理.
3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.
4.通过性质的学习,体会矩形的应用美.
二、教法设计
观察、启发、总结、提高,类比探讨,讨论分析,启发式.
三、重点、难点及解决办法
1.教学重点:矩形的性质及其推论.
2.教学难点:矩形的本质属性及性质定理的综合应用.
四、课时安排
1课时
五、教具学具准备
教具(一个活动的平行四边形),投影仪及胶片,常用画*工具
六、师生互动活动设计
教具演示、创设情境,观察猜想,推理论证
七、教学步骤
【复习提问】
什么叫平行四边形?它和四边形有什么区别?
【引入新课】
我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形, 堂课我们就来研究一种特殊的平行四边形矩形(写出课题).
【讲解新课】
制一个活动的平行四边形教具,堂上进行演示*,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).
矩形的性质:
既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.
继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.
矩形性质定理1:矩形的四个角都是直角.
矩形性质定理2:矩形对角线相等.
由矩形性质定理2我们可以得到
推论:直角三角形斜边上的中线等于斜边的一半.
(这实际上是 △的一个重要性质,即 △斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)
例1 已知如*1 矩形 的两条对角线相交于点, , ,求矩形对角线的长.(按教材的格式)
(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)
【总结、扩展】
1.小结:(用投影打出)
(1)矩形、平行四边形、四边形从属关系如*.
(2)矩形性质.
1.具有平行四边形的所有性质.
2.特有性质:四个角都是直角,对角线相等.
3.思考题:已知如*, 是矩形 对角线交点, 平分 , ,求 的度数
八、布置作业
教材P158中2、5,P195中7.
九、板书设计
十、随堂练习
教材P146中1、2、3、4
转载请注明出处学习一生 » 人教版初二数学上册教案