高一数学必修4知识点总结

高一数学必修4知识点总结

在我们的学习时代,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。那么,都有哪些知识点呢?下面是为大家整理的高一数学必修4知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学必修4知识点总结 1

第一章 三角函数

正角:按逆时针方向旋转形成的角

1、任意角负角:按顺时针方向旋转形成的角

零角:不作任何旋转形成的角

2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第二象限角的集合为k36090k360180,k

第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k

终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k

第一象限角的集合为k360k36090,k

3、与角终边相同的角的集合为k360,k

4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是

l. r

180

6、弧度制与角度制的换算公式:2360,1,157.3. 180

7、若扇形的圆心角为

为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,

1

11

Slrr2.

22

8

、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin

0,

yxy

,cos,tanx0. rrx

9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,

第三象限正切为正,第四象限余弦为正.

10、三角函数线:sin,cos,tan.

2222

11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin

2

sin

tancos

sin

sintancos,cos.

tan

12、函数的诱导公式:

1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.

口诀:函数名称不变,符号看象限.

5sin

cos,cossin.6sincos,cossin. 2222

口诀:正弦与余弦互换,符号看象限.

13、①的*象上所有点向左(右)平移个单位长度,得到函数ysinx的*象;再将函数ysinx的*象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数ysinx的*象;再将

函数ysinx的*象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数

ysinx的*象.

②数ysinx的*象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数

ysinx的*象;再将函数ysinx的*象上所有点向左(右)平移

个单位长度,得到函数

ysinx的*象;再将函数ysinx的*象上所有点的纵坐标伸长(缩短)到原来的倍(横

2

坐标不变),得到函数ysinx的*象. 14、函数ysinx0,0的性质: ①振幅:;②周期:

2

;③频率:f

1

;④相位:x;⑤初相:. 2

函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则

11

x2x1x1x2ymaxyminymaxymin

22,,2.

yASinx , A0 , 0 , T

2

15 周期问题

2

yACosx , A0 , 0 , T

yASinx, A0 , 0 , T

yACosx, A0 , 0 , T

yASinxb , A0 , 0 , b 0, T

2

2

yACosxb , A0 , 0 , b0 ,T

TyAcotx , A0 , 0 ,

yAtanx , A0 , 0 , T

yAcotx, A0 , 0 , T

yAtanx , A0 , 0 , T

3

第二章 平面向量

16、向量:既有大小,又有方向的.量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量.

17、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

C

⑶三角形不等式:ababab.

⑷运算性质:①交换律:abba;

abcabc②结合律:;③a00aa.

a

b

abCC

4

⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.

19、向量数乘运算:

⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a. ①

aa;

②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.

⑵运算律:①aa;②aaa;③abab.

⑶坐标运算:设ax,y,则ax,yx,y.

20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.

设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.

21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有

且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,

点的坐标是

x1x2y1y2

时,就为中点公式。)(当1 ,.

11

23、平面向量的数量积:

⑴ababcosa0,b0,0180.零向量与任一向量的数量积为0.

⑵性质:设a和b都是非零向量,则①abab0.②当a与b同向时,abab;当a与b反向

2

时,abab;aaaa或a.③abab.

2

⑶运算律:①abba;②ababab;③abcacbc.

⑷坐标运算:设两个非零向量ax1,y1,bx2,y2,则abx1x2y1y2.

222

若ax,y,则axy,

或a设ax1,y1,则abxx12yy12bx2,y2,

0.

5

高一数学必修4知识点总结 2

第一章 三角函数

1.

正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分 零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。 角负角:按顺时针方向旋转形成的角叫做负角。

的 第一象限角{α|k2360°<α<90°+k2360°,k∈Z}

分 第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z} 类 第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z} 第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z} 或{α|-90°+k2360°<α<k2360°,k∈Z} (象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限. 2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+ k2360°,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。 3.几种特殊位置的角:

⑴终边在x轴上的非负半轴上的角:α= k2360°,k∈Z

⑵终边在x轴上的非正半轴上的角:α=180°+ k2360°,k∈Z ⑶终边在x轴上的角:α= k2180°,k∈Z

⑷终边在y轴上的角:α=90°+ k2180°,k∈Z ⑸终边在坐标轴上的角:α= k290°,k∈Z

⑹终边在y=x上的角:α=45°+ k2180°,k∈Z

⑺终边在y=-x上的角:α= -45°+ k2180°,k∈Z 或α=135°+ k2180°,k∈Z ⑻终边在坐标轴或四象限角平分线上的角:α= k245°,k∈Z

4.弧度:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。 5.6.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α 相关公式7.角度制与弧度制的换算 8.单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆。

9.利用单位圆定义任意角的三角函数:设α是一个任意角,它的终边与单位圆交于点P(x,y)那么: ⑴y叫做α的正弦,记作sinα即⑵x叫做α的余弦,记作cosα⑶

y叫做α的正切,记作tanαx22

10.sincos1 sin;cos

同角三角函数的基本关系 α≠kπ+

11.三角函数的诱导公式:

πnis(k∈Z)】:ant2cos

公sink2sin式cosk2cos一tank2tan【注】其中kZ

公sinsin公sinsin式cos

cos

式coscos

公sinsin式coscos四tantan

公sincos

2

公sinsco

2

式cossin式cosn si

22

五tancot

2

六tantco

2

注意:ysinx周期为2π;y|sinx|周期为π;y|sinxk|周期为2π;ysin|x|不是周期函数。

13.得到函数yAsin(x)*像的方法:

y=sin(x+)ysin(x)y①y=sinx

周期变换

向左或向右平移||个单位

平移变换周期变换振幅变换

Asin(x)

②y=sinxysinxysin(x)yAsin(x) 14.简谐运动

①解析式:yAsin(x),x[0,+) ②振幅:A就是这个简谐运动的振幅。 ③周期:T④频率:f=

振幅变换

1

T2π

⑤相位和初相:x称为相位,x=0时的相位称为初相。

第二章 平面向量

1.向量:数学中,我们把既有大小,又有方向的量叫做向量。数量:我们把只有大小没有方向的量称为数量。 2.有向线段:带有方向的线段叫做有向线段。有向线段三要素:起点、方向、长度。

3.向量的长度(模):向量AB的大小,也就是向量AB的长度(或称模),记作|AB|。

4.零向量:长度为0的向量叫做零向量,记作0,零向量的方向是任意的。

单位向量:长度等于1个单位的向量,叫做单位向量。

5.平行向量:方向相同或相反的非零向量叫做平行向量。若向量a、b是两个平行向量,那么通常记作a∥b。

平行向量也叫做共线向量。我们规定:零向量与任一向量平行,即对于任一向量a,都有0∥a。

6.相等向量:长度相等且方向相同的向量叫做相等向量。若向量a、b是两个相等向量,那么通常记作a=b。

BC=b,b,7.如*,已知非零向量a、在平面内任取一点A,作AB=a,则向量AC叫做a与b的和,记作ab,

即abABBCAC。

向量的加法:求两个向量和的运算叫做向量的加法。这种求向量的方法称为向量加法的三角形法则。

8.对于零向量与任一向量a,我们规定:a+0=0+a=a

9.公式及运算定律:①A1A2+A2A3+...+AnA1=0②|a+b|≤|a|+|b|

(a+b)+ca(b+c)③a+bba ④

10.相反向量:①我们规定,与a长度相等,方向相反的向量,叫做a的相反向量,记作-a。a和-a互为相反向

量。

②我们规定,零向量的相反向量仍是零向量。

③任一向量与其相反向量的和是零向量,即a+(-a)(=-a)+a=0。

④如果a、b是互为相反的向量,那么a= -b,b= -a,ab=0。

⑤我们定义a-b=a+,即减去一个向量等于加上这个向量的相反向量。 (-b)

11.向量的数乘:一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘。记作a,它的

长度与方向规定如下:①|a||||a| ②当λ>0时,a的方向与a的方向相同;当λ<0时,的方向与a的

方向相反;λ=0时,a=0

(a)()a 12.运算定律:①

②()aaa

③(ab)=ab

()a(a)(a)(ab)=ab ④⑤

13.定理:对于向量a(a≠0)、b,如果有一个实数λ,使b=a,那么a与b共线。相反,已知向量a与b

共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=a;当a

与b反方向时,有b= a。则得如下定理:向量向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=a。

14.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且

只有一对实数1、2,使a1e12e2。我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基

底。

15.向量a与b的夹角:已知两个非零向量a和b。作OAa,OBb,则AOB(0°≤θ≤180°)叫

做向量a与b的夹角。当θ=0°时,a与b同向;当θ=180°时,a与b反向。如果a与b的夹角是90°,我们说a与b垂直,记作ab。

16.补充结论:已知向量a、b是两个不共线的两个向量,且m、n∈R,若manb0,则m=n=0。

17.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。

18.两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差)。即若a(x1,y1),b(x2,y2),则

ab(x1x2,y1y2),ab(x1x2,y1y2)

19.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。即若a(x1,y1),则a(x1,y1)

20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

x1x2y1y2

21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)

11

①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0 ②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1; 当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0. 22. 从一点引出三个向量,且三个向量的终点共线,

B

则OCOAOB,其中λ+μ=1

23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b 的数量积(或内积),记作a2b即a2b=|a||b|cos。其中θ是a与b的夹角,

|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。我们规定,零向量与任一向量的数量

积为0。

24. a2b的几何意义:数量积a2b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

25.数量积的运算定律:①a2b=b2a ②(λa)2b=λ(a2b)=a2(λb) ③(a+b)2c=a2c+b2c 22222222④(ab)a2abb ⑤(ab)a2abb ⑥(ab)(ab)ab

26.两个向量的数量积等于它们对应坐标的乘积的和。即abx1x2y1y2。则:

22

2

①若a(x,y),则|a|xy,或|a|。如果表示向量a的有向线段的起点和中点的坐标分别为(x2x1,y2y1)

(x1,y1)(x2,y2)、,那么a,|a|

(x1,y1)(x2,y2)②设a,b,则abx1x2y1y20ab0

(x1,y1)(x2,y2)27.设a、b都是非零向量,a,b,θ是a与b的夹角,根据向量数量积的定义及坐标表

ab

示可得:cos

|a||b|

第三章 三角恒等变换

cs1.两角和的余弦公式【简记C(α+β)】:oos2.两角差的余弦公式【简记C(α-β)】:c

csocsnisniso

coscosnisnis

3.两角和(差)余弦公式的公式特征:①左加号,右减号。②同名函数之积的和与差。③α、β叫单角,α±β

叫复角,通过单角的正、余弦求和(差)的余弦值。④“正用”、“逆用”、“变用”

is4.两角和的正弦公式【简记S(α+β)】:nis5.两角差的正弦公式【简记S(α-β)】:n

isoscosnisnc

nisoscosnisc

6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同。②右方是异名函数之积的和与差,且正弦值

篇三:高中数学人教版必修四常见公式及知识点系统总结(全)

必修四常考公式及高频考点

第一部分 三角函数与三角恒等变换

考点一 角的表示方法 1.终边相同角的表示方法:

所有与角终边相同的角,连同角在内可以构成一个集合:{β|β= k2360 °+α,k∈Z } 2.象限角的表示方法: 第一象限角的集合为{α第二象限角的集合为{α第三象限角的集合为{α第四象限角的集合为{α

| k2360 °<α<k2360 °+90 °,k∈Z }

| k2360 °+90 °<α<k2360 °+180 °,k∈Z } | k2360 °+180 °<α<k2360 °+270 °,k∈Z } | k2360 °+270 °<α<k2360 °+360 °,k∈Z }

3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:

(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k2360 °+α,k∈Z },其中α为射线与x轴非负半轴形成的夹角

(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k2180 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角

(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k290 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角 例:

终边在y轴非正半轴上的角的集合为{α|α= k2360 °+270 °,k∈Z }

终边在第二、第四象限角平分线上的集合为{α|α= k2180 °+135 °,k∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k290 °+45 °,k∈Z } 易错提醒:

区别锐角、小于90度的角、第一象限角、0~90、小于180度的角

考点二 弧度制有关概念与公式 1.弧度制与角度制互化

180,1

180

57.3,1弧度

180

2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)

nR

R, 其中为弧所对圆心角的弧度数 180

1nR21

lR2||, 其中为弧所对圆心角的弧度数 扇形面积公式:S

23602

弧长公式:l

12

易错提醒:利用S= R||求解扇形面积公式时,为弧所对圆心角的弧度数,不可用角度数

2

规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧

考点三 任意角的三角函数 1.任意角的三角函数定义

设是一个任意角,它的终边与单位圆交于点Px,y,那么siny,cosx,tan

y(r|OP|

rrx化简为siny,cosx,tan2.三角函数值符号

y

. x

规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值

除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线

经典结论: (1)若x(0,(2)若x

(0,

2

),则sinxxtanx

),则1sinxcosx2

(3)|sinx||cosx|1

例:

11

在单位圆中分别画出满足sinα=cosα=、tanα=-1的角α的终边,并求角α的取值集合

22考点四 三角函数*像与性质

考点五 正弦型(y=Asin(ωx+φ))、余弦型函数(y=Acos(ωx+φ))、正切性函数(y=Atan(ωx+φ))*像与性质 1.解析式求法

(1)y=Asin(ωx+φ)+B 或y=Acos(ωx+φ)+B解析式确定方法

A、B通过*像易求,重点讲解φ、ω求解思路: ①φ求解思路:

代入*像的确定点的坐标.如带入最高点(x1,y1)或最低点坐标(x

2,y2),则x1

2

2k(kZ)或

x2

3

2k(kZ),求值. 2

易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+60)的初相是-60

②ω求解思路:

利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一*、两域、四性” “一*”:学好三角函数,*像是关键。

易错提醒:“左加右减、上加下减”中“左加右减”仅仅针对自变量x,不可针对-x或2x等. 例:

“两域”: (1) 定义域

求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数*象或数轴法来求解. (2) 值域(最值): a.直接法(有界法):利用sinx,cosx的值域.

b.化一法:化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值). c.换元法:把sinx或cosx看作一个整体,化为求一元二次函数在给定区间上的值域(最值)问题. 例:

1.y=asinx+bsinx+c

2

2.y=asinx+bsinxcosx+ccosx 3.y=(asinx+c)/(bcosx+d)

4.y=a(sinx±cosx)+bsinxcosx+c “四性”: (1)单调性

ππ

①函数y=Asin(ωx+φ)(A>0, ω>0)*象的单调递增区间由2kπ-ωx+φ<2kπ+,k∈Z解得, 单调递减区间由

22π

2kπωx+φ<2 kπ+1.5π,k∈Z解得;

2

②函数y=Acos(ωx+φ)(A>0, ω>0)*象的单调递增区间由2kπ+π<ωx+φ<2kπ+2π,k∈Z解得, 单调递减区间由2kπ<ωx+φ<2 kπ+π,k∈Z解得;

ππ

③函数y=Atan(ωx+φ)(A>0, ω>0)*象的单调递增区间由kπ-<ωx+φ<kπ+k∈Z解得,.

22规律总结:注意ω、A为负数时的处理技巧. (2)对称性

π

①函数y=Asin(ωx+φ)的*象的对称轴由ωx+φ= kπ+(k∈Z)解得,对称中心的横坐标由ωx+φ= kπ(k∈Z)解得;

②函数y=Acos(ωx+φ)的*象的对称轴由ωx+φ= kπ(k∈Z)解得,对称中心的横坐标由ωx+φ=kπ+(k∈Z) 解得;

2③函数y=Atan(ωx+φ)的*象的对称中心由ωx+φ= kπ(k∈Z)解得. 规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (3)奇偶性

π

①函数y=Asin(ωx+φ),x∈R是奇函数φ=kπ(k∈Z),函数y=Asin(ωx+φ),x∈R是偶函数φ=kπ2∈Z);

②函数y=Acos(ωx+φ),x∈R是奇函数φ=kπ∈Z);

③函数y=Atan(ωx+φ),x∈R是奇函数φ=(k∈Z).

2规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (4)周期性

函数y=Asin(ωx+φ)或y=Acos(ωx+φ))的最小正周期T=,

|ω|y=Atan(ωx+φ) 的最小正周期T=

考点六 常见公式

常见公式要做到“三用”:正用、逆用、变形用 1.同角三角函数的基本关系

π. |ω|

π

∈Z);函数y=Acos(ωx+φ),x∈R是偶函数φ=kπ(k2

22

高一数学必修4知识点总结

转载请注明出处学习一生 » 高一数学必修4知识点总结

学习

关于粉底化妆技巧

阅读(103)

本文为您介绍关于粉底化妆技巧,内容包括非洲人化妆涂粉底,粉底化妆教程日常妆,化妆粉底的正确打法。关于粉底化妆技巧在日常生活中,有不少女性都通过化妆来遮瑕,增强自信心,然而化妆却是一项技术活,其中粉底是一个妆容的关键。对于很多

学习

高一必修4英语作文

阅读(94)

本文为您介绍高一必修4英语作文,内容包括高一必修三英语4单词朗读,高一必修4英语作文题目,高一英语必修一4单词。高一必修4英语作文(通用30篇)在平平淡淡的学习、工作、生活中,大家都不可避免地要接触到作文吧,借助作文可以宣泄心中的情感,调

学习

广州护照到期换证要多长时间

阅读(84)

本文为您介绍广州护照到期换证要多长时间,内容包括广州护照到期更换流程,护照到期是换证还是失效重新申领,广州护照到期更换最新通知。广州护照到期换证要多长时间中华人民共和国普通护照实行“全国通办”,即内地居民可在全国任一出入境

学习

化妆技巧知识

阅读(61)

本文为您介绍化妆技巧知识,内容包括化妆技巧知识分享,化妆技巧知识外国,新手化妆技巧。化妆技巧知识很多的女孩子都想要化个美美的妆出门,但是不知道怎么化妆才是正确的,怎样化才化得好看,正确的化妆步骤是怎呀的?下面就来和一起学习一下吧

学习

广州地铁13号线末班车时间

阅读(74)

本文为您介绍广州地铁13号线末班车时间,内容包括广州地铁13号线末班车时间表,上海地铁13号线末班车时间,广州地铁13号线末班。广州地铁13号线末班车时间广州地铁13号线是广州地铁建成运营的线路之一,于2017年12月28日开通运营首期工程(鱼

学习

职场的化妆礼仪

阅读(76)

本文为您介绍职场的化妆礼仪,内容包括职场的化妆礼仪4篇,职场礼仪化妆的步骤是哪些,职场女性化妆礼仪规范。职场的化妆礼仪职场礼仪,是指人们在职业场所中应当遵循的一系列礼仪规范。学会这些礼仪规范,将使一个人的职业形象大为提高。下面

学习

化妆的学习总结

阅读(68)

化妆的学习总结紧张又充实的学习生活又将谢下帷幕,回顾这段时间的学习,收获的不仅岁月,还有成长,是时候写一篇学习总结了。很好奇学习总结是怎么写的吧,下面是为大家收集的化妆的学习总结,希望对大家有所帮

学习

高一必修英语作文

阅读(79)

本文为您介绍高一英语作文万能模板,内容包括高一英语作文范文精选5篇,高一英语作文范文精选20篇,高一必修英语作文大全。高一必修英语作文(精选22篇)在生活、工作和学习中,大家对作文都不陌生吧,作文根据写作时限的'不同可以分为限时作文和

学习

高一英语必修一Unit4重要知识点汇总

阅读(70)

本文为您介绍高一英语必修一unit4重点知识,内容包括高一英语必修一知识点笔记unit4,高中英语必修四unit1知识点总结,高一英语必修二unit4课文知识点。高一英语必修一Unit4重要知识点汇总在我们平凡无奇的学生时代,是不是经常追着老师要知

学习

广州开学时间

阅读(202)

本文为您介绍广州开学时间,内容包括广州开学时间会延迟吗,广州开学时间调整,广州开学时间。广州开学时间学校(英语:School),是指教育者有计划、有组织地对受教育者进行系统的教育活动的组织机构。名称起源于民国。以下是为大家整理的广州开

学习

高一英语必修一知识点归纳

阅读(63)

本文为您介绍高一英语必修一知识点归纳,内容包括高一英语必修一知识点归纳人教版,高一必修一英语知识点归纳整理,高一英语知识点归纳必修一。高一英语必修一知识点归纳在学习中,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科

学习

高一英语必修一语法知识总结

阅读(89)

本文为您介绍高一英语必修一语法知识总结,内容包括高一英语必修一语法知识,高一英语必修一语法点归纳,高一英语必修一人教版语法讲解。高一英语必修一语法知识总结对于高一的英语学习,我们学生通常要通过大量的、多形式的训练来夯实基础

学习

高一必修一单元英语作文

阅读(63)

本文为您介绍英语高一必修一一单元作文范文,内容包括高一必修一英语作文及范文,高中必修三英语单词跟读第一单元,高中必修三第三单元英语课文分析。高一必修一单元英语作文(精选43篇)在日常学习、工作或生活中,大家总少不了接触作文吧,写作

学习

高中英语必修4必备知识点总结

阅读(116)

本文为您介绍高中英语必修4必背知识点总结,内容包括高中英语必修4单词,高中英语必修四知识点总结,高中英语必修4重点归纳。高中英语必修4必备知识点总结对于高中生而言,必修四的英语内容往往比较难,课堂上有很多语法知识需要我们区分清楚

学习

高一必修4英语作文

阅读(94)

本文为您介绍高一必修4英语作文,内容包括高一必修三英语4单词朗读,高一必修4英语作文题目,高一英语必修一4单词。高一必修4英语作文(通用30篇)在平平淡淡的学习、工作、生活中,大家都不可避免地要接触到作文吧,借助作文可以宣泄心中的情感,调

学习

阿拉伯数学的由来和伟大成就

阅读(73)

本文为您介绍阿拉伯数字的由来和伟大成就,内容包括阿拉伯数字的由来,阿拉伯数学的发明者和传播者,阿拉伯数学的成就。阿拉伯数学的由来和伟大成就阿拉伯数字最初由古印度人发明,后由阿拉伯人传向欧洲,之后再经欧洲人将其现代化,人们以为是

学习

小学二年级钟表数学题

阅读(56)

本文为您介绍小学二年级钟表数学题,内容包括小学二年级钟表练习题,二年级上册数学钟表题,二年级钟表口诀背下来。小学二年级钟表数学题数学题是通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生的。今天为

学习

小学二年级的数学题库

阅读(86)

本文为您介绍小学二年级的数学题库,内容包括小学二年级数学题库大全免费,小学二年级数学题库大全,小学二年级上册数学口算练习题库。小学二年级的数学题库二年级是开发孩子智力、形成良好思维习惯的最佳时期,能为孩子之后的数学学习打下

学习

一年级下册数学《100以内加减口算》总结练习

阅读(96)

一年级下册数学《100以内加减口算》总结练习总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以给我们下一阶段的`学习和工作生活做指导,因此我们要做好归

学习

一道数学题引发的思考优秀作文

阅读(99)

本文为您介绍一道难解的数学题作文,内容包括一道数学题难倒我作文,一道数学题引发的思考600字,一道数学难题引发思考的作文。一道数学题引发的思考优秀作文(精选28篇)在我们平凡的日常里,大家都尝试过写作文吧,作文一定要做到主题集中,围绕同

学习

精选小学生智力数学题30道测试

阅读(75)

精选小学生智力数学题30道测试如何把小学各门基础学科学好大概是很多学生都发愁的问题,为大家提供了小学生智力数学题,希望同学们多多积累,不断进步!智力(Intelligence)是指生物一般性的精神能力

学习

小学生智力数学题30道

阅读(77)

小学生智力数学题30道智力是指生物一般性的精神能力。指人认识、理解客观事物并运用知识、经验等解决问题的能力,包括记忆、观察、想象、思考、判断等。下面是收集整理的小学生智力测试数学题,希望对你有所帮