小学奥数解题技巧
奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。以下是为大家分享的小学奥数解题技巧,供大家参考借鉴,欢迎浏览!
①观察法
在解答数学题时,第一步是观察。观察是基础,是发现问题、解决问题的首要步骤。小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及*形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
看每一行的前三个数,想一想接下去应该填什么数。(适于二年级程度) 6、16、26、____、____、____、____。 9、18、27、____、____、____、____。 80、73、66、____、____、____、____。
解:观察6、16、26这三个数可发现,6、16、26的排列规律是:16比6大10,26比16大10,即后面的每一个数都比它前面的那个数大10。
观察9、18、27这三个数可发现,9、18、27的排列规律是:18比9大9,27比18大9,即后面的每一个数都比它前面的那个数大9。
观察80、73、66这三个数可发现,80、73、66的排列规律是:73比80小7,66比73小7,即后面的每一个数都比它前面的那个数小7。
这样可得到本题的答案是: 6、16、26、36、46、56、66。 9、18、27、36、45、54、63。80、73、66、59、52、45、38。
②尝试法
解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。
一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。
在9只规格相同的手镯中混有1只较重的`假手镯。在一架没有砝码的天平上,最多只能称两次,你能把假手镯找出来吗?(适于三年级程度)
解:先把9只手镯分成A、B、C三组,每组3只。
①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组里;若不平衡,则哪组较重,假的就在哪组里。
②再把有假手镯的那组中的两只分别放在天平的左右秤盘上。如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。
③列举法
解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画*一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)
答:在排页码时要用20个数字是6的铅字。
④综合法
从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。
某装配车间,甲班有20人,平均每人每天可做72个零件;乙班有24人,平均每人每天可做68个零件。如果装一台机器需要12个零件,那么甲、乙两班每天生产的零件可以装多少台机器?
解:根据“甲班有20人,平均每人每天可做72个零件”这两个条件可求出甲班一天生产多少个零件
根据“乙班有24人,平均每天每人可做68个零件”这两个条件可求出乙班一天生产多少个零件
根据甲、乙两个班每天分别生产1440个、1632个零件,可以求出甲、乙两个班一天共生产多少个零件
再根据两个班一天共做零件3072个和装一台机器需要12个零件这两条件,可求出两个班一天生产的零件可以装多少台机器。
综合算式:
(72×20+68×24)÷12=(1440+1632)÷12 =3072÷12 =256(台)
小学奥数常用公式大全
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a
7、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
8、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab
9、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh
10、三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高
11、平行四边形s面积a底h高面积=底×高s=ah
12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷2
13、圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏
14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径
15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数
16、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数
17、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
18、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
19、植树问题1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数