成人高考数学复习资料
成人高等学校招生全国统一考试(National Unified Examination for College Admissions for Adults),简称成人高考,是我国成人高等学校选拔合格的毕业生以进入更高层次学历教育的入学考试,属于国民教育系列教育,已经列入国家招生计划。下面是为大家整理的成人高考数学复习资料,欢迎大家借鉴与参考,希望对大家有所帮助。
成人高考数学复习难点
难点一:集合思想及应用
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。
1、难点磁场
已知集合A={(x,y)|x2+mx—y+2=0},B={(x,y)|x—y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围。
难点二:充要条件的判定
充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系。
2、难点磁场
已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件
难点三:运用向量法解题
平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。
3、难点磁场
三角形ABC中,A(5,—1)、B(—1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。
难点四:三个“二次”及关系
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
4、难点磁场
已知对于x的所有实数值,二次函数f(x)=x2—4ax+2a+12(a∈R)的值都是非负的,求关于x的方程=|a—1|+2的根的取值范围。
难点五:求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。
5、难点磁场
已知f(2—cosx)=cos2x+cosx,求f(x—1)。
案例探究
[例1](1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式。
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(—1)|=|f(0)|=1,求f(x)的表达式。
难点六:函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一。本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。
6、难点磁场
设m是实数,记M={m|m>1},f(x)=log3(x2—4mx+4m2+m)。
(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。
(2)当m∈M时,求函数f(x)的最小值。
(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。
难点七:奇偶性与单调性(一)
函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样。本节主要帮助考生深刻理解奇偶性、单调性的'定义,掌握判定方法,正确认识单调函数与奇偶函数的*象。
7、难点磁场
设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数。
难点八:奇偶性与单调性(二)
函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。
8、难点磁场
已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
案例探究
[例1]已知奇函数f(x)是定义在(—3,3)上的减函数,且满足不等式f(x—3)+f(x2—3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=—3x2+3x—4(x∈B)的最大值。
难点九:指数函数、对数函数问题
指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、*象和性质并会用它们去解决某些简单的实际问题。
9、难点磁场
设f(x)=log2,F(x)=f(x)。
(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;
(2)若f(x)的反函数为f—1(x),证明:对任意的自然数n(n≥3),都有f—1(n)>0;
(3)若F(x)的反函数F—1(x),证明:方程F—1(x)=0有惟一解。
难点十:函数*象与*象变换
函数的*象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。因此,考生要掌握绘制函数*象的一般方法,掌握函数*象变化的一般规律,能利用函数的*象研究函数的性质。
10、难点磁场
已知函数f(x)=ax3+bx2+cx+d的*象如*,求b的范围。
难点十一:函数中的综合问题
函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力。
11、难点磁场
设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=—4。
(1)求证:f(x)为奇函数;
(2)在区间[—9,9]上,求f(x)的最值。
成考数学复习方法
距离考试时间越来越近了,对于一些同学特别关心数学问题,现在老师为大家提供一些学习方法,保证你们能考出佳绩。
第一,温习概念。大纲是所有考生都须要彻底理一遍的首要资料。所有的概念都须搞清记熟,查漏补缺。这是9月份之前考生应做的工作。
第二,强调做题质量。从9月份进行,做题是考生这一段时光必需勤加训练的主要内容。综合题、模拟题、历年真题都是最后阶段的必练题目。每套题都必需做完后当真剖析、概括,做一套剖析一套,吃透后再做下一套。反复训练、纠错,才能真正把握。
第三,主要锻炼自己的计算才能。从去年学生常呈现的问题来望,很多人都会将注意力集中在笔记上。从课堂上就不难望出,很多同窗非常爱做笔记,却不常做题。实际上笔记对考试的用途非常有限,最主要的仍是做题,必须要锻炼自己的计算才能和使用才能。许多考生习惯在最后的时光里集中看笔记,其实际功用非常有限。
转载请注明出处学习一生 » 成人高考数学复习资料